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,H!fconsider%the motion of a mixture of two fluids, with a diffusion

effect obeying Fick's lawp for the derivation of the model (1.1) see Section 1

—— - .
A ?

and references [2), [4],[5) and (6]. wé;cohaidergthe full non-linear problem

(i.e., we don't omit the term Xz term in equation (1.14). Moreover, we

g4 (. : - lampta imicror He

don't- assume that fEF? is small. We prove,the existence of a (unique) local
solution, the existence of a global solution for small data, and the

exponential decay to the equilibrium solutions see Theorem A, Section 1.
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SIGNIFICANCE AND EXPLANATION

In this paper we consider the motion of a continuous medium consisting of
two components, say water and a dissolved salt, with a diffusion effect
obeying Fick's law. We denote by v,w,p,%,u,\ the mean-volume velocity, mean-
mass velocity, density, pressure, viscosity and diffusion constant,
respectively. By using Pick's law we eliminate w from the equations and we
obtain (1.1), where p is the modified pressure; see Section 1 and references
{2], (41,[5) and [6]. The initial boundary conditions are given by equation

(1.2).

Kazhikhov and Smagulov [5]),[6] consider equation (1.1) for a small
diffusion coefficient A. More precisely, they assume that condition (1.3)
holds; moreover, they omit the xz term in equation (1.1),. Under these
conditions they prove the existence of a unique local solution for the
3=dimensional motion (in the bi-dimensional case, solutions are global).

In our paper we consider the full equation (1.1), without assumption
{(1.3), and we prove: (i) the existence of a (unigue) local solution; (ii) the
existence of a global solution in time for small initial velocities and
external forces, and for initial densities near-constant; (iii) the
exponential decay (when t + +®) of the solution (p,v) to the equilibrium

solution (p,0), if £ = 0. See Theorem A, Section 1.

The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the author of this report.




"

on

DIFFUSION ON VISCOUS FLUIDS, EXISTENCE
AND ASYMPTOTIC PROPERTIES OF SOLUTIONS

H. Belrao-da-Veiga*

Main Notatlion

2 : an open bounded set in Ra, locally situated on one side of its
boundary I, a reqular (say C‘) manifold.
n = n(x) : unit outward normal to T.
Dys Dyys D s /%y, 3%/ax 0xy, 370t
10,0, : norm and scalar product in Lz(n).

H* : Sobolev space Hk'z(ﬂ) with norm
k
loI:E T 1olar?,
1=0
where

iolat?zs  §  10%at?,

laj=1
Further,
lDlol: )
laj=1

10%? .
m

o 1
H; s Closure of CO(Q) in H ().
LI : norm in L.(ﬂ).
\]
Lz, nk, uo : Hilbert spaces of vectors v = (v,,vz,v3) such that

v e Lz,v1 e Hk,vi e H; (i=1,2,3), respectively. Corresponding
notation is used for other spaces of vector fields. Norms are defined
in the natural way, and denoted by the symbols used for the scalar
fields.

Let us introduce the following functional spaces (see, for instance, (7], (8] and

[12) for their properties) =

*Department of Mathematics, University of Trento, 38050 Povo (Trento) Italy.

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.
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H: (o EH %ﬁ =0 on T and [ o(x}dx =01} , k > 2 .

- Q
vi{ve Co(ﬂ) : div v = o in R},

a={ve Lz t divv=0 in Q, vvn=0 on T},
v={ve l; : divv =0 on Q}.
2 1
B and V are the closure of VvV in L () and !o. respectively. Moreover
2 1
L =H+G, where G { Vp : pe# (2)}. Denoting by P the orthogonal projection of
2

Lz onto H, we define the operator A z -PA on D(A) £ H NV. One has
(Au,v) = ((u,v)) 2§ (DU
Ly 33 2
The norms lolz, 1ol are equivalent in H“, lolj, 1VA0f are equivalent in

,Div ), VueD(A), vev.

3

2
L™ and Ivlz. IAvl  are equivalent in D(A). We define lvlv S ((v,v)): the norms
lvlv, lvl1 are equivalent in V.
Lz(O,TlX) : Banach space of strongly measurable functions defined in ]0,T|
with values in (a Banach space) X, for which
2 T 2
1z1°, = f Tz(t)l, dt < + =,
L°(0,T1X) 0 1
c{(0,T:X) : Banach space of X-vector valued continuous functions on (0,T]
endowed with the usual norm 'ZIC(O,T:X).
M s viscosity (a positive constant).
A : diffusion coefficient (a poaitive constant).
vit,x), vo(x) : mean-volume velocity. Initial mean-volume velocity.
plt,x), Do(x) : density of the mixture, 1Initial density.
Further,
m = inf p (x) , M sup po(x),
xeq xeq
; H - f P _(x)dx.
1”1 g "o
We assume that m > 0.
w(t,x), plt,x) : pressure. Modified pressure
pe=m 4+XveTp - 2280 + A(2utu*)A 1og o.
£{t,x) : external mass-force.
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We denote by c, ;, Cot Cqr Cpo oo» positive constant, depending at wmost on  and

on the parameters Y, A, m, M and ;- It is easy to derive at any stage of the proofs,
the explicit dependence of the constants on the parameters.

For convenience we sometimes denote different constants by the same symbol c.
Otherwige, we utilize the symbols :, G k en,

1. Main results. In this paper we consider the motion of a viscous fluid consisting of

two components, say, saturated salt water and water. The equations of the model are
obtained, for example, in (2], (4), (S], and (6]. Let us give a brief sketch. Let

Pyr Py be the characteristic densities (constants) of the two components, v(1)(t,x) and
v(2)(e,x) their velocities, and elt,x), d(t,x) the mass and volume concentration of the

first fluid. We define the density op(t,x) = do
(1) (2)
v [

+ (1-4) Py and the mean-volume and
(2)
v

1

mean-mags velocities v = 4 + (1-d) v wie v‘,) + (1-e) . Then the

equations of motion are

p[th + (weV)w = £] -pAw - (u+p*)7V div w = -9n,
div v= 0 ,
Dtp + div (pw) = 0 .

-1
On the other hand, Fick's diffusion law (see [2]) gives w = v - Ap Vp. By

elimination of w in the preceeding equations one gets, after some calculations,

p(Dtv + (veT)v) = pAv = X {{(veT)Vp + (VpeV)v] +

2

(1.1) + % [(Vpe9)Vp = = (Vp+Up)Vp + Ap¥p] = - Vp + pf,

O |-

Dtp + wWp ~ Adp 0,
divv=0.
We want to solve system (1.1) in Q. = ]0,7( x . Here p is the modified

pressure. We add to system (1.1) the following initial boundary-value conditions.




ve=20 on JO,T{ x T,

gﬁ -0 on JO,T( x T,
(1.2) v|t_o = vo(x) in @,
ph_o - po(x) in Q.

The first two conditions mean that there is no flux through the boundary.
In (S), [6] Kazhikhov and Smagulov consider the simplified system obtained from (1.1)

by omitting the term containing er moreover, they assume that

(1.3) Ao 2

M-m

Under these conditions Kazhikhov and Smagulov state the existence of a local solution
in time (global in the bidimensional case).

In our paper we take into account the full equation (1.1), and omit the condition
(1.3). For this more general case we prove: (i) the existence of a (unique) local
solution for arbitrary initial data and external face field; (ii) the existence of a
unique global strong solution, for small initial data and external force field. Moreover,
if € T 0, the solution (p,v) decays exponentially to the equilibrium solution

(p,0). More precisely we prove the following result:

2 2 2
Theorem A. let A e v,po -p e HN' ferL (0,T: L), Then there exists

T, e ]o,T]

1

such that problem (1.1), (1.2) is uniquely solveable in QT . Moreover
1

- 2
verlo,r; 8 nc (o, v, ov e L2 0,7, m, o= e 120, :ni) ncoto,T Y.

1 1

1
2 1
Dtp eL (0,T11 H) and m < plt,x) € M,

Moreover, there exist positive constants k,, kz, and k3 depending at most on

(1
1, ¥, A and on the mean density ¢ () such_that that if

. + ~
(1.4) lv°l1 lp° pl2 < x1,

M Or, equivalently, depending on the total amount of mass || p = I po(x)dx.
Q

-4~
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(1.5) (F4] - 2 < kz,
L (0,4=;L")

then the solution is global in time. If f

exponentially to the equilibrium solution (p,0), i.e.
N - “k_t
3

(1.6) Tvit)l, + |D(t)-9l2 < (lv°l1*lpo-pl2) e .

0, the solution (p,v) decays

for svery t > 0.

Theorem A also holds for coefficients u,A regularly dependent on p, v, provided
they are strictly positive and bounded, in a neighborhood of the range of values of the
initial data Po(x). volx). This generallization can be done without any difficulty.
Moreover, with standard techniques, one can prove that the solutions have more regularity
{up to C.) if the data are sufficlently regular and the usual compatibility conditions
holad.

Local existence in the general case (i.e. with the therm and without (1.3)) was

proved in the inviscid case by Beir;o-dn-Velqa, Serapioni and valli in [1]. a similar

result, in the viscous case and for o = l!3, was proved by Secchi [11]. Por another
approach (concerning Greffi's model) see [10].

2. The linearized equations. We start by proving the following theorem:Theorem 2.1 t

p(t,x)} be a measurable function verifying

(2.1) 0 <m<€plt,x) <M ’ a.e., in Q., let Fe€ Lz(o,Ttl) and vo ev.
Then there exists a_ (unique) strong solution v of problem
pntv-uAv--for in QT,
(2.2) div v =0 in QT,
v=0 on )JO,T[x T,
vh_'.o = vo(x) in .
2
Moreover v € Lz(o,T:D(A))nC(O,T;V), pver (0,T18) and
(2.3 ulvl:(o V) +m lv'lz2 +
o1 L°(0,T:H)
2 2 2. 2. .m 2
+!L2IAVI2 <ulvlv+(;+——2~)ll’l2
@~ L*(0,TiH) ° 2™ L(0,TiH)

-5




Proof. Let us write equation (2.2) in the equivalent form(2.4)

’(pti) + YAV = F , v| - vo(x) .

t=0
For brevity let us put
X={v:v et.zto,'rm(n)), \A ex.z(o,'r, mn}.
From well known results (see [9), Vol I, Chapter I : Theorem 3.1 with y = H, X =
D(A), 3 = 0; and (2.42) Proposition 2.1) it follows that X Q¢ (0,7 V).
We start by proving the a priori bound (2.3); an essential device is to introduce a

parameter co in order to conveniently balance the estimates. In H take the inner

-1 2
product of (2.4) with Dtv + c°A v € > 0. Since (v', Av) = 2 Dt'vlv one gets

2 2
Ivi_ + € ulavt <
v o

&la

2
m D vl™ +
t

nie

(2.5)

<1 + 1+ ] .
Fl lDtvI COIFI 1av EOH Dtvl 1Avl

By using the inequalities Irl ID vl < ' lDtvlz + ot 1en 1w

< 4'1u lAvlz + u-1 Irl2 and IDtleAvl < (4n)-1u IAvl2 + u-1u lDtvlz one gets

3
(2.6) 4 t

€ €EM
1 o 2 o 2
< -— —— 1 —— 1 .
(ll " ) IF + m Dtv

Now fix eo - (dnz)-1mu and integrate equation (2.6) on (0,T). This gives the a
priori bound (2.3).
Dafine lvli £ "left hand side of equation (2.3)", H Lz(O,Trl) x V, and
|(P,v°)|3 Z "right hand side of (2.3)".
We solve (2.4) by the continuity method. Define pa I (1-a) ; +ap, c € (0,1},
Clearly pa verifies condition (2.1), for any a. Define Tu H (1-0); + aT, where
Tv = (P(DDtv) -uAv, v't.o) ey,

Tv = (P(PD,v) -uAv, V| o) € V.

-6




Pinally denote by Y the set of values a € [0,1) for which problem (2.2) is solvable
in X for every pair (r,vo) @ Y. Clearly o € Y, because for this value of the
parameter equation (2.6) because the linearized Navier-Stokes equation. let us verify

that Y is open and closed.

Y is open. Let s €Y and denote by G(F,vo) v the solution v of problem

Ta ve= (P,vo). From (2.3) one gets G € L(V:X) (2) with 161 < 1, Equation

» Y.X
Ta°+c v (!,vo) can be written in the form
(2.7 [1=€ G(T-T)}v = G(F,v,).

Since lG(;;T)IX v < 1T-71 equation (2.7) is solvable for Je| < l;—rlxiy (by a

Xy’
Neuman expansion).

Y is closed. lLet ﬁn ey, un > ao, and let Vn be the solution of

T v = (P,v ). Prom (2.3) one has Iv } < I(p,v )I . Since X is an Hilbert space
a 'n o n X o Y

there exists a subsequence v, * Vv e X, weakly in X. From T, T € L(X1¥) one has
v, * ™, v, *+ Tv weakly in Y. Hence Ta v, * Ta v, i.e. Ta v = (r,vo)-

v o [
Let us now return to problem (1.1). Define

(2.8) F(p,v) =2 P {~plveV)v + X {(veV)Vp + (VpeV)v] +

2
+ %— [(Vp+¥V)Vp- g (VoeVp)Vp + ApVp) + pf} .

For convenience we will use in the sequel the translation

(2.9) p=p + 0O,
Recall that p 18 a given constant. To solve problem (1.1) and (1.2) in our
2
functional framework is equivalent to finding v € LZ(O,Tyb(A)), v @ L (0,T/H) and
2 3 2 1
ceL (0,T HN), o'etL (0,T: H) such that
P(thv)-uAv = P(p,v),

(2.10) vlt-o = vo(x)'

D o =-AVo = -y+Vo,
t

-] =g (x),
[+]

| t=0

(2) Banach space of linear continuous operator from Y into X, with norm 1 | VoXe

-7-
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g

where vo eV and oo(x) -p € l-lz(ﬂ), are given. Note that from the above conditions on

o it follows that o e C(0,T; H:)-

We solve (2.10) by considering the linearized problem

n
ad
~

P(thv)-uAv - !(;,;) z
(2.11) Vgm0 = Vo!X)
D0 - Mo = ~veVo. '
a|t_° - co(x),

and by proving the existence of a fixed point (;,;) = (p,v) for the map (;,\-r) + (p,v)
defined by (2.11).

In order to get a sufficiently strong estimate for the linearized equation (2.11) 3 Ve
take in account the particular form of the date ;-V;. As for estimate (2.3) we will
introduce a balance parameter € > 0.

Theorem 2.2 Assume that v € Lz(o,'l‘xlz)ﬁC(o,'nl;) and that
- 2 3 2 2 3 2 1
celL (o,'rm“)nc(o,r;n“). Then the golution o €L (O,TIH“), ¢'eL (0,7/H ) of

problem (2.11)3. (2.11), verifies the egtimate

2 2
(2.12) tol 2.+ ol 3
C(0.Ts Hy) %0, mim)
<cyla 13 + c e e1w® + 1war® .
c(0,tJH") C(0,TiH )
+tcye [I;I""2 + 1var? 2 1
L (0, TsH) L (0, T)R")
for every positive € verifying
A
(2.13) € < z] ’

where c, _is the constant in (2.16). Here Cq¢ €y, ©3 are positive constants depending

only on .

Proof. The existence of a solution ¢ in the required space follows with standard

techniques from the a priori bound (2.12), or from [9], Volume II, Chapter 4, Theoream 5.2,

with H= H‘. Let us prove (2.12):




By application of the operator A to both sides of (2.11)3, by multiplication by

2 - -—
A0, and by integration over £ one gets yﬁDt l1Agl + (9(AAg-veVo), VAO) = 0, Hence

1. 4 2 2
. - — + AMVAol™ <
(2.14) 2 3 1408 [

< (IDvDol + 13D261) 1VAal .

L]
By using Sobolev's embeding theorem H1 C’,L6 and Holder's inequality it follows that

1 4 2 2
. - — <
(2.15) 2 3 1Agl "+ AlLVAGH 1 1
< c(uﬁl/l’n:;l?lv;l1 +
- -1 -1
+ v, |Vo|:2|VAu|/2) 19801 .
. -3 4 2 4
An utilization of abc € (Bt ")a + (€/2) b + (€/2) ¢ , € > 0, 1leads to
1 4 2 2 - 2
(2.16) 2 at 1A0l” + AlVAOL™ < ¢ eIDvI1 +
+ e, etaa1? + << 19 v
1 &3 1 1
+ce vt + &= vt
3 1 1
€
Hence for € verifying (2.13) one has
2.1 <2 12012 + 2 s < =€ gz vad 4
dat 3 1 1
-4, -2°F - 2 -2
+ Mol 1761)) + cge (RDVEY + 1VAGET),

where the constants ¢ depend only on . This proves inequality (2.12). Recall that
Ial2 < clAot, lol3 < clVAol
Remark. One could also consider the linearized equation D, o+ veV¥o - AA0 - 0 instead
of (2-11)3r then estimate (2.17) holds with o replaced by ¢ and without the term
cge IVA;Iz. In this case the solution 0 of the linearized problem verifies the maximum
principle (which doesn't hold for the solution of (2.11)3). However, the linearization
(2.11)3 seems to be more in keeping with the linearization (2.11)1. Besides, the maximum
principle will be recovered for the solution of the full nonlinear problem (2.10)5.
3. The nonlinear problem. Local existence. We will not take care of the explicit
dependence on U,A,m,M; some of the constants CoCpe depend on these fixed quantities. 1In

order to simplify the equations, we denote by Ko’ Ky, Kz,..., constarts depending on the

norms of the initial data Ivol and fo I, .,

v o 2




In this section we solve (2.10) by proving the existence of a fixed point

(p,v) = (p,v) for system (2.11). Define

- - -2
K, 2 {v:iv = v {x), bvi +
1 =0
It ° 10, m8%)
-2 -2 2
+ vl + Iyl <2c¢c, vt}
c(o,T;:V) L2(0,T18) 4 oV
=z -2 =2
K, (o0, _ =0 (x), lal + lol 2
2 | t=0 o Lz(O,T;H:) C(O,T;HN)
< 2c. to 12, 101 <K
2 o 2’ 2 ‘

- m
to - g} <3 }

° c(Q,)

e il 2 2 -1 . -
where C, = u[min {u,m,(m")/(an 3] and K_ = M2c, lo 1, + CV/ac,e, Iv 1, dot, .

Here c = c() is a positive constant such that
- - .= - - = 2
(3.1 lv‘wl1 <c lvlv |w|2 , Vvev, welr .
Note that for every P e l2 one has in QT

(3.2) §<S(e,x) <n+§‘.

2 — -——
We now evaluate the L norm of F = F(p,v). By using Sobolev's embeding theorem

1.6 -
H QL and Holder's inequality one easgily gets
(3.3) irp, 1l < ¢ |3|i tovi, + ¢ |$|"1’ 10251 -
«1p%51, + ¢ 131, tove, 1pot? 4
1 1 1 1

+c1po1’ 0%, + ¢ 1pat® +

1 1 1
+c1e1?
Consequently,
(3.4) 1r(o, w12 <c v tste 1)’ V2 .
Lo, mim
scict® 14cin?
o 2

Lz(O,TIH) .

Hence, by using (2.3), it follows that the solution v of (2.11),, (2.11)2 verifies

-10-




2 2 2
vl + It + vl <
cto, V) L2(0,1,m%) 130, m1?)

(3.5) 1

2

<c |v°|: + X, 0T+ 1) +cofl
L°(0,T:H) .

4
On the other hand, from (2.12),
(3.6) 1012 + 1002 , <
c(o,'rmN) L (0,'1‘1!!“)

2 -3
< { Cylo 1, + X, € T+K ¢ Y.
-1
Now we fix € > 0 sguch that x4 € €2 cz lcoli . Finally, by fixing a

sufficiently small T > 0, it follows that v € !1, g e ‘2 The estimate for Dt ]

follows by using equation (2.11)3 and (3.1)., The estimate for the sup nomm of

g - oo in 6’1‘ is proved as follows:

t
Clearly, lo(t) - uol1 <f fTo*(s)f, ds < LN '1‘1/2 + On the other hand lg(t) - o !

o
< c. fa(e)~c l1/3 fo(t)=0 |2/3,
o1 o 2

5
H G o). Consequently

5/3
fco -0t <cC x1/3 '1'1/6 te, 72¢, 101 +lal)2/3,
oc(a) S o 6 2 o2 o 2
T

c@)
where Cg depends only on {; recall that

2
where C,_ = C_(}) is a positive constant, such that Ilo) <C gl , Vvoe #. ().
6 6 c(a) 6 2 N
Hence, by choosing (if necessary) a smaller value for T, one gets 1o - o I _ < m/2 .

c(Q,.)
Now we utilize Shauder's fixed point theorem. Clearly K = K1 + ‘2 is QQTconvox.

2 2 2 2 -
compact set in L (0,T;L ) x L (0,T:;L ). Let us denote by & the map 9(p,v) = (p,v),

defined by (2.11)., Since ¢ (K) C K, it is sufficient to prove that & : K+ K is

continuous in the L2 topology. If ;n » v in l’.z(Q.r). P * ; in Lz(QT), is follows by

- 2 2 1 2
compactness arguments that vn * v weakly in L (0,™H ) and in R (0,T;L ), and that

- - 2 2 1 2 -
Vpn + Vp wea‘kly in L (0,T;H ) and in H (0,T:;L ). In particular on is a bounded
/o +€ 2-¢ - 3
sequence in H 0, mm ) c,c°’°(QT) €, for suitable positive €., €, a.

- —
3) a-Holder continuous functions in QT.

(

-{l=




- - - - - 1 1
Hence pv + ¢ uniformly in QT. Moreover, Vo and Vpn are bounded in 8/2 (0, T/E ) and
4

in r&a(o,r:u') respectively. Hence ;; + ; and V;; + V; strongly in the L
topology. It follows from (2.8) at r(;;, ;n) * r(;,;) as a distribution in Qr;
consequently F(;;, ;n) - F(;,;) weakly in l?(QT), because P(;n,;n) is a bounded
sequence in this space. Analogously, ;;° V;n + v V; strongly in Lz(QT). It follows
from the linear equations (2.11) that vo + v and pn + p in Lz(QT) and Lz(QT),
respectively. Hence ¢ is continuous. This finishes the proof of the existence of a

local solution. Uniqueness will be proved in Section S.

4. Global solutions. Asymptotic behavior.

In this section the constants Cy depend at most on @ and on the quantities

W, A and p, i.e. on the total amount of mass (f}] p. We assume that
—_‘ ~
. <

(4.1) lool2 (2c) (-1

hence p/2 < m < M< 3 p/2. Let (p,v) be a solution of (1.1). PFrom (2,.6) for

-1
eo - (4H2) m i, and from (3.3) one gets

2
n 2 p 4 2  omy 2
(4.2) 3 Ibtvl + 2 3¢ vl + . Hz Iavl™ <

2 3 6 2
<C (|v|1 + Iul2 ) (|v|2 + l°'3) +C Iul2 +cif”,

- -1
where C depends only on £, U, p. On the other hand, from (2.17) for € = (2c9) A,

one gets
4 2 A 2 6 6
— - 'S N
(4.3) 3t Aok~ + 3 1VAcl c (Ivl1 +Ial2 )

From (4.2) and (4.3) it easily follows that

m
-

a. . p 2 2 2
—_ 1 + 1 + +
7Y ( 2 vlv Aol™) 5 'Dtv'

2 . c(lvlf; +s1aatbam?) |

2 2 A
+ EE—; 1avi® + 2 1720l
16M




In particular, since 1avl > clvlv and 1VAol > clAol, one has

2

22
v 7]

2 r 2
+ tagl ) < ~[C 0=C,, (Tvi, +i401
2 2

2
(lvlv + bAcl™) + <:"2 117,

Hence (4.5), below holds for every t € (0,4 if

.|
(4.4) at (twl

c..(ivi1? s 180132 2y
11 [ [
(4.5)

[o4 [+
c. 10 <_;.‘l a0

12 7 %0, +m) 11

it must be, from (4.4), that

2 2
In fact, if C ( |V(t)|v + IAd(t)2|) =

11 50,2

22 (vtentd + 1a0en?y <o

Let us now prove the last assertion in theorem A. Under the hypothesis (4.5)4, it
follows from (4.4) that

2 (awtd + 1801?) < - E%Q an? + 1aar?) .

this proves (1.6) . 0
S. Uniqueness. We prove that the solution (p,v) of problem (1.1) is unique in the class
in which existence was proved; see Theorem A. We remark that more careful calculations
lead to uniqueness in a larger class.

Let (p,v), (;,;) be two solutions of problem (1.1), (1.2) and put
u= v-;, n= p-;. By subtracting the equations (2.10), written for (p,v) and (;,;)
respectively, and by taking the inner product with u in H one gets

1 4 2
3 ac (pu,u) +y ""v

1
- - -2- (van'uz) +
A 2 - -
+ ; (Apl“ ) - (u,Dth) + (F-F,u) .

2
By using (Ap,uz) = -(Vp,Du) , we show that

1.4 Eaa? <l 2
(5.1) 2 at (pu,u) + 2 lulv < 2 tvl 1908 _tul” +

2
A 2 2 2 2
~— +
+ m IVpl_ tul ClDtvl ful™ +

+ % 1an? + (2-Fu) .

~13=




On the other hand, by subtracting equations (2.10)3 written for

(p,v) and for (;,;) respectively, and by taking the inner product with 4n in Lz(n)

one gets
2 2

wnr? + 2 aam? < cavpi? aa?

2 2
+C vl vm*° ,

4
ac

N

(5.2)

By adding (5.1) and (5.2) it follows that

(5.3 ;% [(pu,u) + |VnI2] +u Iul: + % |An|2 <
<o ) (1a? + 1vm?) & (r-Fou),

where 9‘(t) is a real jntegrable function on [0,T].

On the other hand, by using Sobolev's embeeding theorems and Hglder'. inequality
(and also ab ¢ clz+t-1b2) the reader easily verifies that given € > 0 there exists an
integrable real function Oz(t) (dependent on p, ;, v, ; and on €) such that
(5.4) Hr-Fourl € 0 ce) tut? + ¢ (i Zerw? ) |

By using lul2 < n-1(ou,u) , (5.3) and (5.4) it follows that

2 (ou,m + 19M%) € (8,(6) + 0,(8)) [(ou,w) + 1Tm1%)],

Uniqueness follows now from Gronwall's lemma and from “lt-o =0, "lc-o =0,




t.

6.

10.
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SIGNIFICANRCE AND EXPLANATION

In this paper we consider the motion of a continuous medium consisting of
two components, say water and a dissolved salt, with a diffusion effect
obeying Fick's law. We denote by v,w,p,%,u,A the mean-volume velocity, mean-
mass velocity, density, pressure, viscosity and diffusion constant,
respectively. By using Pick's law we eliminate w from the equations and we
obtain (1.1), where p is the modified pressure; see Section 1 and references
(2], [4]1,(5) and [6). The initial boundary conditions are given by equation
(1.2).

Kazhikhov and Smagulov [5],[6] consider equation (1.1) for a small
Aiffusion coefficient 1. More precisely, they assume that condition (1.3)
holds; moreover, they omit the Az term in equation (1.1),. Under these
conditions they prove the existence of a unique local solution for the
3sdimensional motion (in the bi-dimensional case, solutions are global).

In our paper we consider the full eguation (1.1), without assumption
(1.3), and we prove: (i) the existence of a (unique) local solution; (ii) the
existence of a global solution in time for small initial velocities and
external forces, and for initial densities near-constant; (iii) the
exponential decay (when t + +°) of the solution (p,v) to the equilibrium

solution (p,0), 1f £ = 0. See Theorem A, Section 1.

The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the author of this report.

o




DIFFUSION ON VISCOUS FLUIDS, EXISTENCE
AND ASYMPTOTIC PROPERTIES OF SOLUTIONS

H. Bolr:o-du-Vngl'

Main Notation

Q t an open bounded set in n’, locally situated on one side of its

boundary T, a regular (say c‘) manifold.

n = nix) 1 unit outward normal to [.
2
Di' Dlj' Dt s 3/3x1, ? /axlaxj, 3/3¢c.
‘ V0,0 ,) :+ norm and scalar product in Lz(ﬂ)-
: B t Sobolev space #°2(2) with norm
k
102z ] wlar?,
1=0
where
a2 §  100°w?,
laf=1
Purther,
wha? = ] 1w'a? .
lal=1
5 1 (4 1
i Hy : Closure of Co(ﬂ) in H ().
f 1o, : norm in L (D).
: 2 ko
L, ¢ Ho s Hilbert spaces of vectors v = (v‘,vz.va) such that
v e Lz,v1 e Hk,v1 e H; (i=1,2,3), respectively. Corresponding

notation is used for other spaces of vector fields. Norms are defined
in the natural way, and denoted by the symbols used for the scalar

fields.

Let us introduce the following functional spaces (see, for instance, [7), (8] and

' {12] for their properties) =

*Department of Mathematics, University of Trento, 38050 Povo (Trento) Italy.

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.
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n:s{aln“

:%:’;-o on T and [ o(x)ax =01} , k> 2.
Q
vE{veCZ(mxdivv-o in 9},
l-(vel.zxdivv-o in 2, ven =0 on T},

va{ve l' 1 divv=0 on 0}.

0
2 1
H and V¥V are the closure of VvV in L (2) and lo, respectively. Moreover
2 1
L°"=u+G, where G={ Vp : pen (D}. Denoting by P the orthogonal projection of

l? onto H, we define the operator A = ~PA on D(A) = lzfﬁv. One has

{Au,v) = ((u,v)) = § (DU ,,D.v), VueDA), vev.
g L3 ,
The norms Iolz, lAot are equivalent in “N' Iola, 140l are equivalent in
H: and lvlz, Iavl are equivalent in D(A). We define lvl: 2 ({(v,v))1 the norms
lvlv, lvl1 are equivalent in V.
2
L (0,T:X) : Banach space of strongly meagurable functions defined in ]O,T{
with values in (a Banach space) X, for which
2 T 2
1zi°, z [ Tz(e)h, at < + =,
L (0,T:X) 0
c(0,T:X) : Banach space of X-vector valued continuous functions on [0,T]
endowed with the usual norm 'zlc(O,T;X).
u : viscosity (a positive constant).
A : diffusion coefficient (a positive constant).
vit,x), vo(x) : mean-volume velocity. Initial mean-volume velocity.
plt,x), Dolx) : density of the mixture. Initial density.
Further,
m 2 inf oo(x) , MZ sup oo(x),
xeQ e
~_ 1
p Z Y £ Do(x)dx.
We assume that m > O.
w(t,x), pl(t,x) : pressure. Modified pressure
p=% +}A vV - AZAo + A(2u+u*)d log p.
£(t,x) : external mass-force.

-2-




We denote by ¢, ;, Cqt Cqr Cgs soe positive constant, depending at most on @ and
on the parameters U, A, m, M and ;. It is eaay to derive at any stage of the proofs,
the explicit dependence of the constants on the parameters.

Por convenlience we sometimes denote different constants by the same symbol c.
Othervise, we utilize the sysbols c, ¢, k € .

1. Main results. 1In this paper we consider the motion of a viscous fluid consisting of

two components, say, saturated salt water and water. The equations of the model are
obtained, for example, in (2], [4], (5], and (6]. Let us give a brief sketch. LlLet

Pye Py be the characteristic densities (constants) of the two components, v(')(t,x) and
v(z)(t,x) the.r velocities, and e(t,x), d(t,x) the mass and volume concentration of the
first fluid. We define the density ol(t,x) = dn1 + (1-4) Py and the mean-volume and

(1) (2) (1) (2)
v v v

wean-mass velocities v = 4 + (1-e)v . Then the

+ (1-d) v wie

equations of motion are
p(Dtv + (weV)w = £] =pdw = (p+*)? div w = =¥y,
div v= 0 ,
Dtp + div (pw) = 0 .
-1
On the other hand, Fick's diffusion law (see [2)) gives w=v - Ap Vp. By

elimination of w in the preceeding equations one gets, after some calculations,

O(Dtv + (veV)v) = yAv = X [{(veV)Vp + (VpeV)v) +

2
(1.1) + % [(Vpe9)Vp = ;' (Yp+¥p)¥p + Ap¥p) = - Vp + pf,

°t° +vwWp - Np =0,
divv =0 .
We want to solve systeam (1.1} in Q, = 10,7l x Q. Here p lis the modified

pressure. We add to system (1.1) the following initial boundary-value conditions.




ve 0 on 10,?( xT,

]

gg-o on 10,7 xT,
(1.2) 'lc-o - vb(x) in 0,

p|t-0 - Do(x) in Q.

The first two conditions mean that there is no flux through the boundary.

In {S), [6) Kazhikhov and Smagulov consider the simplified system obtained from (1.1)
by omitting the term containing 121 moreover, they assume that
(1.3) R

Under these conditions Kazhikhov and Smagulov state the existence of a local solution
in time (global in the bidimensional case).

In our paper we take into account the full equation (1.1), and omit the condition
{(1.3). For this more general case we prove: (i) the existence of a (unique) local
solution for arbitrary initial data and external face field; (ii) the existence of a
unique global strong solution, for small initial data and external force field. Moreover.
if ¢ = 0, the solution (p,v) decays exponentially to the equilibrium solution

(;.0)- More precisely we prove the following result:

-

2 2
Theorem A. let s e V,po -p e H:, feL (0, T3 L ). Then there exists

T, € jo,T]

such_that problem (1.t), (1.2) is uniquely solveable in Qr . Moreover
- 1

3 2
ve L2(0,11: .2) nc (0,T1r . Dtv e L2 (0,T11 H), p-p € LZ(O,T11H“) nc (O,T‘I ﬂ“).

°t° e L2(0,11) H') and m < plt,x) < M.

Moreover, there exist positive constants k4. ki, and k3 depending at most on
“ (N

2, u, A and on the mean density »p such that that if
(1.4) lvol1 + lpo-pl2 < k‘,

M or, equivalently, depending on the total amount of mass [02] p = | oo(x)dx.
f

4=

R e T




and

(1.5) 124 <k
L (0,+=;L")
then the solution is global in time. If f = 0, the solution (p,v) decays

exponentially to the equilibrium golution (p,0), 4i.s.
N N -xX.t
3

(1.6) Iv(t)l1 + lp(t'.)-ol2 < (lv°l1+loo-olz) e '

2'

for every t > 0.
Theorem A also holds for coefficients u,A\ regularly dependent on p, v, provided

they are strictly positive and bounded, in a neighborhood of the range of values of the
initial data po(x). vo(x). This generalization can be done without any difficulty.
Moreover, with standard techniques, one can prove that the solutions have more regularity
(up to c') if the data are sufficiently regular and the usual compatibility conditions
hold.

Local existence in the general case (i.e. with the them and without (1.3)) was

proved in the inviscid case by Beir;o-da-Veiql, Serapioni and Valli in [1]). a similar

result, in the viscous case and for § = 13, was proved by Secchi [11]. For another
approach (concerning Greffi's model) see [10].

2. The linearized equations. We start by proving the following theorea:Theorem 2.1 t

p{t,x) be a measurable function verifying

(2.1) 0<m<€p(t,x) €M ’ a.e.; in Q,, let Fe Lz(o,'nl) and A ev.
Then_ there exists a (unique) strong solution v of problem
p Dtv - uydv = -Vp ¢+ F in QT,
(2.2) aiv v =0 in Q,r.
v=20 on 10, T{x T,
vlt'O = votx) in K.

Moregver v € L’(o,'rm(n))ncw.'nvt, D v e Lz(o,'r;l) and

(2.3 ulvl:(o - + m lv'l22 +
o1t L*(0,7:H)
2 2 2 2 2
+¥—2|Av|2 <u|vlv+(;+—“—2) i,
™ (0, 718) ° 2M L°(0,Ts0)




Proof. let us write equation (2.2) in the equivalent form(2.4)

P(pbtv) +UAV = P , Vv - vo(x) .

|t=0
For brevity let us put ‘
X={v: v u.z(o,'rm(h)), v' ex.z(o,r, "} .
From well known results (see [9], Vol I, Chapter I : Theorem 3.1 withy = H, X =
D(A), ) = 0; and (2.42) Proposition 2.1) it follows that X GC (0,T; V).
We start by proving the a priori bound (2.3)7 an essential device is to introduce a

parameter to in order to conveniently balance the estimates. In H take the inner

-1
product of (2.4) with Dtv + t:oh v, t:o > 0. Since (v', Av) = 2 Dtlvl‘zr one gets

2 2 2
ID v~ + vl + € plavl <
n Dt vv ou Av!

Nie
2l
-3

(2.5)

< 1 + 1+ 1 .
Il "’tv eolrl 1av eon ID!:V 1avl

By using the inequalities IFI ID vl < ' u>':vl2 +mirt?, e aavt

-1 1

c & vt + 7V rt? ana Io viiavt < (am aviZ + u" IDtvlz one gets

3 2 p.a, .2 " 2
3 . 12 <
(2.6) LA Sl AL L
1. % 2 ‘o"z 2
- — o —— l .
< (- + " ) Pl m Dtvl

Wow fix eo - (Anz)-1w and integrate equation (2.6) on (0,T). This gives the a
priori bound (2.3).

Define lvl% T "left hand side of equation (2.3)", V = Lz(ﬂ,'l‘rl) x Vv, and
l(r,vo)lg 2 "right hand side of (2.3)".

We solve (2.4) by the continuity method. Define pa = (1-a) p + ap, a € [o,1).

Clearly Da verifies condition (2.1), for any a. Define Tc = (1-0)'? + aT, where

"

Tv

Tv 2 (P(PD V) -UAV, V|, o) € V.

(P(pbtv) “UAv, vlt-o) eV,

-6~
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et i A .Y T s o st m oo s

PFinally denote by Y the set of values a € [0,1) for which problem (2.2) is solvable
in X for every pair lr,vo) € Y, Clearly o € Y, because for this value of the

pavameter equation (2.6) because the linearized Navier-Stokes equation. Lat us verify

that Y 1la& open and closed.

Y is open. lLat s, € Y and denote by G(!‘,vo) £ v the solution v of problem

T, V" (r,vo). Prom (2.3) one gets G € L(ViX) (2) with 16l < 1. Equation

Y ¥.X i
T°o+e v = (F,v ) can be written in the form 4
(2.7 [1-¢ G(T-T)}v = G(r,v ).

Since IG(T-TM_ < IT-T1 equation (2.7) is solvable for le| < l?—rlx‘y (by a 1
Y] ’

XY Xy'!
Neuman expansion).

Y is closed. Let u_ ey, a_ * uo, and let vn be the solution of

- . . 1 <1 1.
'l‘anvn (r,vo) Prom (2.3) one has "n'x (!'.vo) y Since X is an Hilbert space

there exists a subsequence vyt v @ X, weakly in X. From T, Te L(X1Y) one has 3

v
v ] o

Let us now return to problem (1.1). Define

'!‘vv * ™V, 'Nv + Tv wveakly in VY. Hence 'ra v, Ta v, i.e. 'ru v = (r,vo).

(2.8) P(p,v) EP {=p(veVlv + X [{veV)Vp + (VpeV)v) +

2
+ ':- [(Vp*V)Vp= ';' (Vpe¥p)Vp + ApVp) + pf)} .

For convenience we will use in the sequel the translation
(2.9) p = ; + 0.
Racall that ; is a given constant. To solve problem (1.1) and (1.2) in our
functional framework is equivalent to finding v € x.z(o,'rmum. v € Lz(o.'x‘;l) and
g e z.z(o,r: !\:), o' e Lz(o,'l': H‘) such that
P(thv)-uAv = Flp,v), 1

(2.10) Vgm0 = Vo!X)e

Dtu =A\V0 = -ye¥0o,

o‘t_o = oo(x),

(3) Banach space of linear continuous operator from ¥ into X, with norm 1 | VoXe

P

B, a0 ARRE - SE TR S SRR




where 'o €9V and oo(x) -p e ﬂ:(m, are given. Note that from the above conditions on

0 it follows that ¢ e c(0,T u:).

We solve (2.10) by considering the linearized problem

r,

P(oD, v)-uAv = F(p,V)
(2.11) Vim0 * votx).

D 0 - Mo = -vVo. '

°lt -0 = uo(x),
and by proving the existence of a fixed point (;,;) = (p,v) for the map (p-,;) + {p,v)
defined by (2.11).

In order to get a sufficiently strong estimate for the linearized equation (2.1 [,

take in account the particular form of the date ;-V;. As for estimate (2.3) we wil.
introduce a balance parameter € > 0.

Theorew 2.2 Mssume that v e L2(0,7/8°)NC(0,TiM)) and that

- 2
5 e 12(0,198)) NCl0, TIEL).  Then the solution © € L(0,TiBY), o* e L (0,1in") of

problems (2.")3, (2.")‘ verifies the estimate

2 2
(2.12) lol 2. + lol <
(0,71 KJ) Lz(o,'r,n:)
<cylo 13 +c, e n® + b
° c(0,t18%) C(0,TiH )
v c, ¢ [Im?, + var? 5 1o
L (0, 1H%) L0, m8%)
for every positive € verifying
A
(2.13) € < z—c" N

vhere ¢4 _is the constant in (2.16). Here c,, Cys C3 are positive constants depending

only on .
Proof. The existence of a solution ¢ in the required space follows with standard

techniques from the a priori bound (2.12), or from (9], Volume 1I, Chapter 4, Theorem 5.2,

with H= ﬂ’- Let us prove (2.12):




By application of the operator A to both sides of (2.11)3, by multiplication by

Ad, and by integration over § one gets b&Dt lel2 + (V(MAg-v+¥0), VAG) = 0. Hence

a

1 2 2
R - — + A}
(2.14) 2 3 1401 VAol <

< (IDvDal + 1vp2al) 1Vaal .
L]

By using Sobolev's embeding theorem H1 C';L6 and Holder's inequality it follows that
1. 4 2 2
(2.15) 2 & fAcl "+ AlVAOl™ < 1 1

< c(lp;l/zlb_vl?lvsl1 +

- -1 -1
+ 19, |Vo|{2 |VAa|/2) Va0l .

An utilization of abc < (8¢ 2)ad + (e/2) % + (e/2) &%, € > 0, leads to

1.a 2 2 -2
(2.16) 3 30 a1 + vAa1” < ¢ etpul ] +
+ c. etvaal? + S99 ava? +
1 3 1
+ce 1vao1? + S wvad .
3 Y 1
€
Hence for € verifying (2.13) one has
a 2 2 - -4
2.17) 32 1ar? + 2 s’ < £ g} va +
-4 -2° -2 -2
+ 19% va%) + c e (apvi? + avaclYy,

1 1 9 1

where the constants c depend only on . This proves inequality (?.12). Recall that
lcl2 < claol, Icl3 < cliVaol .

Remark. One could also consider the linearized equation Dt o+ ;*VO ~ AAG = 0 instead
of (2.11)3; then estimate (2.17) holds with ; replaced by ¢ and without the term

c9e lVAzlz. In this case the solution 0 of the linearized problem verifies the maximum
principle (which doesn’'t hold for the solution of (2.11)5). However, the linearization
(2.11)3 seems to be more in keeping with the linearization (2.11),. Besides, the maximum
principle will be recovered for the solution of the full nonlinear problem (2.10);.

3. The nonlinear problem. local existence. We will not take care of the explicit
dependence on U,)A,m,M; some of the constants €,Cpr depend on these fixed quantities. 1In

order to simplify the equations, we denote by Kys Ky, Ky, constants depending on the

norms of the initial data v I and lo 1_ .
oV o2

-9=-




In this section we solve (2.10) by proving the existence of a fixed point

(p,v) = (p,v) for system (2.11). Define

= o - - - 2
K, = {v : v vo(x), vl +

t=0 120, m18%)

+ 1yl + Iv'l €2¢C, v}
C(0,T:V) Lz(o'r'.) v

{0 : 0 =g (x), 191 + 101
| o

t=0

€2 €y loolz, 2

o - ot <31,

° c(é;)

= : 2 2.,9-1 - -
where C, = u[nm {u,M, (") /(aM ))] and K = x/zcz la°I2 +C |/4<:2<:4 Ivolv Ioal2 .

Here ¢ = c(R) is a positive constant such that
== - = .= - - 2
(3.1) Iv’wl‘| <c|vlv lwl2 ,Vvev, wen .,
Note that for every ; e !2 one has in Q,r

m - m
(3.2) 5 < p(t,x) €M+ 2 °

We now evaluate the !.2 norm of = F(;,;). By using Sobolev's embeding theorem

l!'(:.l.6 and Rolder's inequality one easily gets

(3.3) tr(p, w12 < ¢ 1wl v, 4 c w12 1% .

-m"’?:'l1 +c 191, 1oVl IDo1? +

-

+c loEl:: ||.-:23|1 +c lDaIE; +
+ce? .
Consequently,
- - 7
(3.4) 1r.91%, <o v aeio )2 22,
L0, Tim
+C o l: '1‘~vclfl2
° L0, Ti8)

Hence, by using (2.3), it follows that the solution v of (2.11)1, (2.11)2 verifies

-10=




2 2 2
vl + vl + lv'l <
(]
co,Tsiv) 120, m18%) t¥(0,mi02)

(3.5) 1

cc, tv? +R 0T v C 112

4
oV 0, mm .
On the other hand, from (2.12),
(3.6) 1012 + 1012 , <
cto,mmQ) L (0, miH )
2 -3
<{c2lc°|2+x3c T4+R, € Y.
Now we fix € > 0 such that K, € < 27 ¢, |c°|§ . Finally, by fixing a

sufficiently small T > 0, it follows that v e 11, ce ‘2' The estimate for Dt g
follows by using equation (2.11); and (3.1). The estimate for the sup norm of

g-oc in 5,1, is proved as follows:

o
t
Clearly, lo(t) - ¢.1°I1 < J fo'(a)l, ds < K '1‘1/2 « On the other hand lo(t) - °°| -
173 ° 2/3 c(q)
< Cq lcs(t'.)-u‘_“l1 la(t:)-col2 . where Cg depends only on {; recall that

H5/3 () CyC(E). Consequently
- 1/3 1/6 2/3
fo aol - < c5 xo T (c6 Jzez lcy':’l2 + '°o'2) ’
c(Q.!.)

where C_, = C_{R) is a positive constant, such that 1o} <c. lol, , Voo az(m.
6 6 @ 6 2 N

Hence, by choosing (if necessary) a smaller value for T, one gets lo - °°lc(6,r) < w2 .
Now we utilize Shauder's fixed point theorem. Clearly K 2 K' + !2 is a convex,
compact set in L2(0,T1L2) x L2(0,T1L2). Let us denote by é the map 0(;.;) = {p,v),
defined by (2.11). Since ¢ (K) C K, it is sufficient to prove that ¢ : K+ K ig
continuous in the Lz topology. If ;n + ; in x.z(Q,!), ;n +> ; in z.z(q,r), is follows by
compactness arguments that ;n -y weakly in x.z(o,-r,lz) and in H‘(O,T;l-z), and that
V;n > weakly in tho,rmz) and in B‘(O,T;Lz). In particular ;n is a bounded

/, +€ 2-52 o~ (3)
sequence in H (0,TsH )c,c°' (Q'r) » for suitable positive €1, ez. x.

L] -
( 3) a-Holder continuous functions in Q,r.




- - - - - 1 []
Hence oy + p uniformly in QT. Moreover, A and Vpn are bounded in 3/2 (0,8 ) and
4

in H‘/z ( O,T:ﬂ‘) respectively. Hence ;n +v and V;n + % strongly in the L
topology. It follows from (2.8) that ";n' ;n) + !(;,;) as a distribution in Qs
consequently F(p , v ) > F(p,v) weakly in !-z(Q,r). because an,;“) is a bounded
sequence in this space. Analogously, ;n. V;n rv. V; strongly in Lz (Q‘E)’ It follows
from the linear equations (2.11) that vtV and P in Lz(QT) and Lz(QT).
respectively. Hence & is continuous. This finishes the proof of the existence of a

local solution. Uniqueness will be proved in Section 5.

4. Global solutions. Asymptotic behavior.

In this section the constants Cy depend at most on I and on the quantities

U, A and p, {.e. on the total amount of mass |[R] p. We assume that
- - ~
(4.1) |O°|2 < (2¢) P,

hence p/2 € m < M€ 3 p/2. Let (p,v) bhe a solution of (1.1). From (2.6) for

co - (4!2)-‘n ¥, and from (3.3) one gets

2
n 2 up_4 2 m 2
(4.2) 3 lbtvl + 2 a lev + 3 Iavt® <
8 M I
2 3 6 2 :
£C (lvl1 + lal2 ) (Ivl2 + '°'3) +C l«:ul2 +ciet” , .

~ -1
where C depends only on f1, ¥, p. On the other hand, from (2.17) for € = (2C9) A,

one gets

(4.3) 4 ppat? 4 -;— wast? < ¢ (lvl? wa®) .

dat
From (4.2) and (4.3) it easily follows that

6
2

a 2 2 ] 2
- + Aol + T +
at €5 lvlv Aol™) 2 IDtvl

2
+ B an? + 2 ivaai? < cant® vaa®an?y |
re° ¢ v




In particular, since favl > (':lvlV and #VAgl > clicl, one has

2

-]
(4.4) at (lvlv

+ 1801?) < -[c,o-c"(|vl3 +lAul2)2]-

2 2 2
. (Ivlv + tAot™) + c’2 LF 4 ha®

Hence (4.5)1 below holds for every t € (0,+=[ jf

C
2 2.2 10
c"(lvol + IAcol )y < ) n

(4.5)

2 €40 /10
Cyp ' o <2 V2,
L (0,4=;m) 1

In fact, it C ( lv(f.)l: + lAd(t)zl )2 - it must be, from (4.4), that

1
3 2 2
= vy + 1aoe)ty <o,

€10/2

Let us now prove the last assertion in theorem A. Under the hypothesis (4.5),, it

follows from (4.4) that
2 vl v ar?) < - E§9 (awn + 1aa?) .

this proves (1.6) . 0
5. Uniqueness. We prove that the solution (p,v) of problem (1.1) is unique in the class
in which existence was proved; see Theorem A. We remark that more careful calculations
lead to uniqueness in a larger class.

Let (p,v), (p,v) be two solutions of problem (1.1), (1.2) and put
u= v-_v, n= o-;. By subtracting the equations (2.10)1 written for (p,v) and (;,;)
respectively, and by taking the inner product with u in H one gets

1 2 1 2
35w 4wt} =L wevpdy .
x 2 - -

+ 3 (dp,u”) - (u,Dtv-u) + (P-F,u) .

By using (Ap,uz) - -(Vp,mz) , we show that

1.4 Eyu? <3 2
(5.1) 2 a (pu,u) + 3 ful < lvl-lel.lul +

v 2

22

2 2
+ m 19pl_ tul

+ clnil2 tut? +

+ % 1amt? 4 (T, .

-f{3=




On the other hand, by subtracting equations (2.10), written for
(p,v) and for (;,;) respectively, and by taking the inner product with An in nz(n)
one gets

1wm? « 2 am? < c 1w 1w o

N -

(5.2) -
s crv? o,

By adding (5.1) and (5.2) it follows that

(5.3) 2 tton,m + 19 4wl ¢ 2 m®
<o ey (1ar? «19mi?) + (rF,u),

where 9,(t) is a real integrable function on (0,T].

On the other hand, by using Sobolev's embeeding theorems and n31a.z'. inequality
(and also ab < tlz+c-1b2) the reader easily verifies that given € > 0 there exists an
integradble real function Oztt) (dependent on p, ;. v, v and on €) such that
(5.4) lee-F,a) | < 0,0e) 1t + ¢ (iidam?) .

By using lul2 < l-’(Pu,u) , (5.3) and (5.4) it follows that

22 tomsw + 17?1 < q0,ce) + 0,080 CCpu,u) + 1TmeP),

Uniqueness follows now from Gronwall's lemma and from u| = 0, nl = 0.

t=0 0

t=0
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